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A b s h c i  We perform a moleculardynamics simulation for the liquid metal sodium with 
the intention to study the glass hansition temperature. Using the same set of liquid-rglass 
structure factors, this is done (a) svUchlrally by calculating the Wendt-Abraham parameter and 
(b) dynamically by solving the non-linear integral equation embodied in the mode-coupling 
theory. It is found that the glaas bansition temperaNE obhined from the former is distinctly 
lower than fhat fmm the latter. In an attempt to explain such a difference in the glass m i t i o n  
temperature. we draw atlention to some recent work on shear viscosity mefficients and analyse 
the latter ~ s u l t s  in light of the basic hypothesis of rtrc modecoupling fomulatiao. It appears that 
the glass transition point obtained in the context of modesoupling theory for metallic sodium 
is reasonably predicted. and hat the Wendt-Abraham glass VMSition point, determined directly 
fmm the structure data, seems numerically closer to the calorimeeic glass transition temperature. 
Also, we compare the metallic non-ergodicity form factor obtained from the present moleculas- 
dynamics simulation with the companding asymptotic formula pmposed in the modecoupling 
theory. and they are found to agree reasonably well with each other. The effect of the pair 
potential on Le nonergodicity form factor is also discussed briefly for both the had-sphere and 
the metallic systems. 

1. Introduction 

A liquid can freeze into a disordered solid phase if the slow nucleation process in the 
supercooled state can be overcome. The liquid-glass transition phenomenon has been 
observed to occur in laboratory experiments. To account for this microscopic behaviour, 
computer simulation experiments have been playing a crucial role. One of the early 
attempts from computer simulations which is of relevance to the present work is the Monte 
Carlo simulation on the pair correlation function g(r )  carried out by Wendt and Abraham 
(1978) and Abraham (1980). By studying the change of R = g~”(r)/gmm(r),  gmio(r) and 
gm(r) being respectively the first minimum and the first maximum for the pair correlation 
function, versus temperature T they were able to deduce a structural criterion signalling 
the onset of the glass transihon. Specifically, Wendt and Abraham noticed that a liquid 
transforms into a glassy state when the supercooled branch of R versus T, which is linear, 
changes in slope and bends over linearly also to a glassy branch. They further asserted 
the liquid-glass transition point to be the extrapolated interception of these two branches 
and defined the corresponding temperature as the glass transition temperature T,”̂ . This 
particular parameter R, which indicates the inception of the liquid-glass transition, has 
subsequently received substantial attention in the literature. An interesting feature common 
among subsequent computer simulation experiments is that the RLG (at the liquid-glass 
transition point) for any monatomic liquid, whether it be a liquid metal or a non-metallic 
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simple liquid such as a Lennard-Jones system, satisfies quite well 'Ru = 0.1 f 0.02 at the 
glass transition temperature. An account of all these related works has been summarized 
in a recent article by the present author (Lai 1988a). (The interested reader should consult 
the following very recent work, which relates to R: Lai (1988b). Li er al (1988), Shen ef 
al (1990) and Tanaka and Ichimaru (1987).) 

In the theoretical approach to T,, Bengtzelius. Gotze and Sjolander (Bas) (Bengtzelius 
et al 1984, Bengtzelius 1986a,b), and independently Leutheusser (1984), formulated a 
microscopic theory to study glass transition problems. This so-called modecoupling 
approach, based on many-body methods and the kinetic theory, has made considerable 
progress in recent years (Sjolander 1980, 1985, 1989, Jackle 1989, Gotze and Sjogren 
1992). Underlying this mode-coupling theory is the memory effect. The latter describes 
the influence that each atom in a liquid system experiences as a disturbance (that it creates 
on the medium) propagates through its surrounding atoms and as this disturbance reacts 
back on the same tagged atom at a later time. This kind of non-linear feedback mechanism 
becomes more transparent as the temperature of a liquid system is lowered. Accordingly, the 
existence of the memory effect has resulted in the Occurrence of slowly decaying correlation 
functions in which are buried most of the physics of glass transition. Bengtzelius eral(l984) 
first succeeded in deriving a closed non-linear coupled integral equation for the density- 
density correlation function. By appealing to the argument that the density fluctuation 
should remain 'long-lasting' at sufficiently reduced temperature and that the finite solutions 
of the non-linear coupled equation would then indicate the onset of a non-ergodic state, they 
subsequently applied their formalism to both the hard-sphere (Bengtzelius et al 1984) and 
the Lennard-Jones (Bengtzelius 1986a, b) systems. Satisfactory agreement between theory, 
simulation data and experiments was obtained. In the following years, Gijtze and Sjogren 
(1987a,b, 1989a) and Buchalla etal (1988) proposed a modification to the mode-coupling 
model by adding an extra (linear) memory term to the integral equation. Specifically, they 
considered explicitly the coupling between density and longitudinal current fluctuations in 
deriving the mode-coupling conhibution to the memory function. This modification enables 
one to make a more quantitative analysis of the dynamics of the glass transition, particularly 
in the vicinity of the liquid-glass domain, which is found to exhibit significant changes in 
viscosity measurements (Taborek er nl 1986). Although the modecoupling model of BGS 
can be extended readily to include coupling between density and temperature fluctuations, 
leading thus to the study of the glass transition via examining various thermodynamic 
quantities (see Bengtzelius and Sjogren (1986) for further details), in this work we confine 
ourselves solely to the evaluation of T, through the study of the density fluctuation. 

Our motive to cany out the work is threefold. First, we present a quantitative application 
of the mode-coupling theory to a real metal using a realistic potential constructed rigorously 
from the electron theory of metals. The results of calculations may serve to indicate whether 
a metallic fluid is an exception in the kind of dynamical transition that has so far been 
applied only to non-metallic liquids such as the hard-sphere or the Lennard-Jones system. 
Furthermore, anomalies in viscosity were reported that reveal the fact that liquid metals show 
a deviation in the power-law behaviour contrasted to a class of 'fragile' liquids investigated 
(Taborek et al 1986). Secondly, by virtue of the non-linear integral equation of BGS we 
estimate the T, and the root-mean-square displacement. We compare the BGS Tg with the 
one corresponding to the 'Rw parameter. Because we make use of the same g ( r )  or its 
Fourier transform, the static structure factor S(q), both in obtaining the Tg via the Wendt- 
Abraham criterion and in solving for the non-trivial solutions of slowly decaying density 
correlation functions at long time, such a comparison, in addition to ascertaining further the 
role played by the structure parameter 'R, should clarify certain ambiguities raised recently 
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by Yip (1989) in relation to the glass transition temperature. Thirdly, to delve further into 
the mode-coupling theory, we shall discuss briefly certain properties of the present realistic 
non-ergodicity form factor obtained here from the molecular-dynamics (MD) simulation, 
and compare it with the recent proposed asymptotic formula of Gotze and Sjogren (1992). 
This comparison will give us information regarding the relaxation process of a supercooled 
liquid. 

This paper is organized as follows. In section 2 we first describe our MD simulation and 
in executing the algorithm introduce a reasonable approximation for estimating the change in 
density of Na metal with the quenching temperature. We present the modecoupling theory in 
section 3 by summarizing briefly relevant equations for the timedependent density-density 
correlation function. Our results of calculations for (i) the MD simulation and (ii) the mode- 
coupling theory will be given in section 4 along with a discussion on any implications that 
may be drawn from this work. In section 5 we give our conclusion. 

2. Molecular-dynamics simulation 

We performed an MD simulation for the pure sodium system starting from a liquid state at 
T = 423 K and quenching down to T = 23 K. A total of 686 particles were confined in a 
cubic cell subject to the standard periodic boundary condition at the cubic walls. Following 
our previous work (Lai and Lin 1990). we adopted Beeman's algorithm (Beeman 1976) in 
numerical integration of the equation of motion. The temperature quenching process was 
divided into stages and at each stage we carried out 4500 time steps for the equilibrium pair 
correlation function, after performing a series of heat-bath contacts (Tanaka 1981, 1982) to 
achieve the stationary state. The time step is here taken to be s, which corresponds to 
a quenching rate higher than our previous work (Lai and Lin 1990). Since the interatomic 
potential V ( r )  and the density of Na metal are prime inputs to MD simulation, we describe 
in sections 2.1 and 2.2 below how we obtained these quantities. 

2.1. Interatomic potential 

Given a system of N pseudoatoms confined in a volume S2 at a given density n = N/S2  and 
temperature T, we assume that the pseudoatoms interact via a symmetric pairwise potential 
V f r ) ,  which is constructed using the modified generalized non-local model pseudopotential 
of Li et al (1986) and Wang and Lai (1980). According to the latter works we write 

sin(qr) 
V ( r ) = -  '' ( I - -  : loo@ Wd-) 

r 4 

where G&) is the normalized energy-wavenumber characteristic and Z& = Z z  - pd * 9 

Z and pd being the nominal valence and the depletion charge, respectively. It is worth 
while to note that in (1) proper attention has been given to the oneelectron energy 
and pseudo-wavefunction by carefully incorporating higher-order perturbative corrections 
through introduction of a parameter in the bare-ion pseudopotential. 

2.2. Estimation of atomic volume 

In view of the fact that the densities of real materials were observed (Owen 1985, Brawer 
1985) to undergo continuous change in magnitude with temperature in the liquid+glass 
transition, it is therefore necessary to include this realistic effect throughout the glass 
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transition process. The present method of determining the atomic volume a, versus T 
follows that of our very recent work &ai et ai 1993) and proceeds as follows. 

First, we performed an MD simulation to calculate the g ( r )  using V ( r )  evaluated at each 
temperature with the no obtained from a linear interpolation between the experimental liquid 
and crystalline densities (Borgstedt and Mathews 1987). Secondly, from the calculated g(r), 
we determined the associated Wendt-Abraham R at each T. The interception of the linear 
supercooled liquid branch and the linear glassy solid branch (Lai e ta i  1987, Lai 1988% Lai 
and Lin 1990) allows us to locate a glass transition temperature, say with a value Ti'). Next, 
we returned to the QO versus T curve and modified it such that for T < Ti') the versus 
T behaviour follows that of the crystalline phase. In other words, for T < T$l) we assumed 
the same gradient for the modified % versus T curve and for the crystalline Na metal. This 
assumption is based on the observation that below T, the glassy branch is almost solid-like 
(Owen 1985, Zallen 1983). With this new set of Qo versus T data we constructed V ( r )  
and repeated MD simulations for pair correlation functions. The corresponding R versus T 
curve can be plotted to obtain a new T$2). For liquid Na we noticed that Ti*) was higher 
than T(') Our next step was to modify again the Q, versus T relation. Since 7'2) Ti'), 
a physically reasonable modification was to shift the glassy QO versus T branch (in parallel 
with the crystalline one) until it intersects at TF). The whole MD simulation for g(r)  and a 
corresponding plotting of R versus T to locate a new T$it'), i = 2, 3,. . ., were repeated. 
This procedure was carried out iteratively for i = 2, 3, . . . until Tp') Y T(') In actual 
simulation we terminated the iterative procedure when a difference in T, of less than 5 K 
was detected. Albeit approximated, the present procedure did take into account the density 
effect realistically (Elliott 1984). 

S K Lai and H C Chen 
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3. Mode-coupling theory 

In this section we present some basic formulae that permit calculation of Tg within the so- 
called ideal glass transition and then move on to the equations for studying the prediction 
of COtze. 

3.1. Basic formulae 

Central to the mode-coupling theory is the time-dependent densitydensity correlation 
function F ( q ,  t )  = (6n(q, t)Sn(-q. 0)) where Sn(q, I )  is the Fourier transform of Sn(r, t ) .  
being the microscopic density fluctuation from the homogeneous equilibrium value, and 
(. . .) is the usual ensemble average. This function contains useful information on the local 
atomic structure as well as accounting for its time evolution. Let us write the Laplace 
transform of F ( q ,  t )  as 

&q, z) = i Jdmdteii'F(g,z) Imz > 0. 

Its relation written in terms of the so-called memory function h?(q,x) can be shown 
(Bengtzelius 1986b) to be 
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where B = l/kBT is the inverse temperature and m is the atomic mass. As discussed 
in the work of BGS (Bengtzelius et al 1984a), one can identify two separate mechanisms 
pertaining to the decaying behaviour of F(q .  t )  in terms of its associated memory function 
M ( q ,  f). Specifically, it can be shown that F ( q ,  t )  consists of a short-time rapidly decaying 
part representing essentially uncorrelated binary collisions and of a collective long-lasting 
decaying part r(q, t) involving non-linear couplings of the slowly varying F(q ,  t ) ,  At 
high densities or at low temperatures, the former contribution is insignificantly small while 
the latter effect is dominant. Bengtzelius e ta l  (1984) and Bengtzelius (1986a) derived a 
non-linear self-consistent dynamical equation for which the solidification condition 

(4) 

(5 )  

,. - . 

f ( q )  = F ( q *  1 + " ( q )  # 0 

f(q)/[l - f ( q ) l =  [mpS(q)/q21r(q, t + 00). 

is related to the memory function r(q. t )  through 

By making a two-mode approximation, BGs (Bengtzelius et al 1984) showed that the slowly 
decaying part r(q, t) satisfies 

+ %lc(q') + c(q")l S(q')S(q")R(q', t )R(q",  f) (6) 

where R(q ,  t + 00) + f ( q ) ,  and c(q )  = [ l  - l/S(q)]/n is the direct correlation function. 
It is appropriate to note at this point that f ( q )  can be checked against experiments such 
as Mossbauer scattering (Champeney and Sedgwick 1972), neutron scattering (Mezei et al 
1987a, b, Frick et a1 1990, Borjesson et al 1990). dynamic light scattering (van Megen and 
Pusey 1991), and Brillouin scattering (Elmroth etal  1992). 

In a similar vein, we can calculate the self-part of f ( q ) ,  f s ( q ) ,  by replacing M ( q ,  t )  
and R(q ,  t )  in the above equation with M S ( q ,  t). having the same mathematical form, and 
FS(q ,  t )  respectively (note, in particular, that for the self-part f S ( q )  the liquid structure 
factor S(q) = 1). The root-mean-square displacement (Ar2(t))  can thus be defined in 
terms of F'(q, t )  as 

7 

where FS(q ,  t )  satisfies an integral equation similar to (6). Equations (5) and (6) are basic 
formulae derived previously by BGS. Given a means to determine S(q)  as a function of the 
control parameter (temperature or density), the above equations should be solved iteratively 
(and quantitatively when S(q) is given as a smooth and continuous function especially in 
an analytic form) for non-zero solutions f (q) and accordingly fS(q). The temperature at 
which this just happens is defined to be TgBGS. 

However, in a series of important works (Gotze 1985, 1986, 1987), Gotze studied 
(5) and (6) in some detail. He proposed that the analytic properties for f ( q )  should be 
examined. Indeed, as shown in the appendix, near the glass transition point f ( q )  is given 
analytically by equation (A17): 

f ( q )  = f B G S ( q )  + orhBGS(q) t"2  

where f B G S ( q )  is the non-ergodicity form factor at the transition point, a is a parameter 
defined in the appendix by (AIS), hBGS(q) E [ l  - fBGS(q)I2  is the critical amplitude 
depending on the physical system and f = (TBGs - T ) / T B G S  is the separation parameter. 
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4. Numerical results and discussion 

In this section we input the MD Fourier-transformed S(g) into the non-linear integral 
equation (5) and determine T,"" by requiring the eigenvalue of to approach one. 
We compare first in section 4.1 the resulting T:,' with that T,"" determined from the R 
versus T curve. The variation of the eigenvalue in the vicinity of the critical point will be 
examined and compared in section 4.2 with the theoretical prediction of GO&. 

4.1. Comparison of T,"" and T,"" 
We first assess our MD data by comparing in figure 1 the Fourier-transformed and the 
experimental S(q) at T = 423 K and 373 K. The simulated g ( r )  at lower T displays 
similar change as our previous works (Lai et al 1987, Lai 1988a,b, Lai and Lin 1990). In 
figures 2 and 3, we present respectively the QO versus T and R versus T curves calculated 
iteratively from pair correlation functions. We note three relevant points. 

(i) Our calculated S ( g )  at the melting point and at higher temperatures agree very well 
with the x-ray results (Huijbin and van der Lugt 1979). 

(ii) The g ( r )  versus T results display the same subtle changes in structure (such as the 
Rattening of the second maximum near T,"", the development of the double-peak structure, 
enhanced oscillations at large r and at sufficiently low T ,  etc) in accord with OUT previous 
findings &ai et al 1987, Lai 1988a,b, Lai and Lin 1990) and with those observed in 
laboratory experiments. 

(iii) We see from figure 3 that R exhibits a change in slope and that RE at TWA = 189 K 
is equal to 0.105 satisfying the criterion RLG = 0.1 i O . 0 2 .  We note at this p h t  that this 
universal criterion has so far been confirmed only for a monatomic system. For a binary 
system Lewis (1991), however, has recently found an RE that deviates far from this 
criterion. 

All these three points reinforce our belief that the present non-local pseudopotential is 
adequate for structural studies. 

Having gained confidence in our simulated g ( r ) ,  we may use them as input to the 
mode-coupling theory. To this end, we need, first of all, to Fourier-transform the g ( r ) .  The 
resulting S(g) are sole inputs to the integral equations (5) and (6) and are to be solved 
iteratively as follows. Initially we arbitrarily set f ( q )  = 0.5 and insert it into (5) and (6) 
along with the MD S(g)  at the appropriate temperature. Next, the obtained f (9) versus q is 
substituted back into the equations and the procedure is repeated iteratively. At T > 223 K 
we observe that we always have the trivial solution f(g) = 0. A first non-vanishing f (g) 
occurs at T = 198 K, here we find that f (g) stabilizes to show a well developed structure 
and this behaviour persists for more than 220 iterations (see figure 4). Consequently, we 
may expect TgBGS to lie in between 198 and 223 K for the Na element. To locate T,"", 
one has two alternatives. One is to search for it manually, that is, starting at a temperature 
a few kelvins above 198 K, say with an Interval AT(j) .  We progressively increase the 
temperature and perform iterative calculations at each T until f ( q )  = 0 is encountered. The 
whole procedure is repeated each time starting at the next highest T for which f (g) # 0 
and with a AT(j+') < AT(/). Because the MD simulation is carried out stepwisely, this 
method is generally quite tedious to implement numerically. In particular, we have to resort 
to interpolation for the intermediate & ) ( r )  at T(') using g('-')(r)  and g(i+')(r)  respectively 
at T( i - ' )  and T('+'). Fortunately with a refined algorithm (Davis and Polonsky 1972), the 
interpolated g(r)  is well justified by the quality of the g(r )  obtained (see figure 5 and the 
inset showing the magnitude of the error). 
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Figure 1. Swcture factor S(q) for the liqoid 
metal sodium (full curve) ampxed with x-ray 
experiments (full circles) from Huijbin and van der 
Lug7 (1979). 

Figure 2 Atomic volume 620 versus t e m p e w e  7 in 
kelvins for the sodium system. The broken line is the 
expected path taken by the crystalline phase (taken from 
Borgstedt and Mathews (1987)) whereas lhe full line refers 
to the liquid-glass path obtained iteratively as described in 
the text. 

0.15 

O I  

I/ Figure 3. Wendt-Abraham parameter U 0.05 ' " ' t ' ~ ' " " t ' '  
0 io0 300 400 plohed against temperaNE T in kelvins for 

lhe sodium element. 

Equivalently one can follow the analytic prescription of Gotze (1985) and examine 
the stability matrix C,, as defined in (AS). According to Gotze Cqk possesses a largest 
eigenvalue EO and this eigenvalue decreases as the temperature is lowered. In fact from the 



0 2 4 6 10 
Figure 4. Non-ergodicity form factor f (4) 
(broken curve) for the sodium element 
calculated itmtively (see text) from (5) and 
(6). The corresponding self-part f'(q) is 
given by the full cum. 

definition of Cqk one can derive easily a relation for Eo which, near to Ty, is given by 

I i z  Eo = 1 - 2or( 1 - A)( 
In other words one can determine T,"" by plotting [ l  - E0(T)Iz versus T and looking 
for a T that yields [ I  - = 0. Practically the method of Gotze is straightforward 
and appears a lot easier to operate. We have followed and cross-checked both approaches. 
We found that TfGs = 215.78 K seems to agree quite well by both means. At this point 
it is appropriate to digress for a moment and make a comment on this TF. We note 
that TfGS moderately depends on the treatment of S(q) at small q due to truncation in 
the Fourier transform of g ( r ) .  We have tested the Percus-Yevick hard-sphere, Verlet-Weis 
hard-sphere and charged hard-sphere analytic formulae in order to extrapolate S(q)  from 
just before the first peak (q c 1 ,&-I) to q = 0. For reasons of regularity and smoothness in 
the extrapolation process, we adopted S p y ( q ) ,  although determined differs by a few 
kelvins from that using SCHS(q). Furthermore because we are using Spy(q) to approximate 
the small-q behaviour, our estimation for the eigenvalue of the stability matrix was found 
numerically to be 0.984 f 0.0007 (at T = 215.7961 K ow calculation after 150 iterations 
yields f ( q )  = 0). an accuracy limited by our m-simulated S(q). 

We are now in a position to compare the above Ty with that determined via the 
Wendt-Abraham criterion. We notice in the first place that T;Os is higher than T,"̂ by 
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2 
h 

v 
f i  

m 

1 
Figure 5. Par correlation function p ( r )  for the 
sodium element calculated at T = 198 K (full 
curve) compared with an approximated g ( r )  
(full cucles) interpolated between g ( r )  at T = 
223 K nnd T = 173 K respectively. The inset 
shows the difference between the calculated and 
interpolated p( r ) .  

2o 
0 

15 5 10 

r (4 

about 27 K. What implication does this number convey? In order to answer this question, 
!et us recall a recent paper by Yip (1989). Yip made an assessment of the validity of mode- 
coupling theory by analysing its theoretical framework and by studying comparatively the 
viscosity measurements, He observed two points. Firstly, he noticed from his study of 
the experimental shear viscosity coefficient q (Taborek et a1 1986) for a class of diverse 
'fragile' liquids that the glass transition temperature extrapolated from the data in the low-q 
region to infinity viscosity and defined by Taborek et al to be To is distinctly greater than 
the calorimetric glass transition point T,. In particular he found that this 7'~ delineates an 
interesting feature in that it marks the boundary between two types of viscous behaviour: 
power-law for T z TO and approximately Arrhenius (where the viscosity changes rapidly 
from a value about a factor of 10 times that in a normal liquid to several orders of magnitude 
greater) for T -= To. Secondly, Yip (1989) made a detailed comparison between the mode- 
coupling theory in the context of (5) and (6). so-called ideal glass transition, and that in 
the more refined version (Gotze and Sj6gren 1987b. Das and Marzenko 1986, Das 1987) 
where the coupling between density and current fluctuations is explicitly included. Based 
on the numerical data of q by Das and Marzenko (1986) and Das (1987), he came to 
the conclusion that TgBCs is perhaps more appropriately identified to be To, an ideal glass 
transition temperature. Accordingly if one were to asserf that TWA. being determined 
directly from structural data, is a temperature closer to the calorimetric glass transition 
temperature T,, it is thus not surprising to see the difference in the T:" and T,"". There 
are ample evidences from computer simulations (Kimura and Yonezawa 1983, N6se and 
Yonezawa 1985, Tanaka 1986a, b, Watanabe and Tsumuraya 1988) that such an assertion 
for T,"" is physically reasonable. It should be noted, however, that although the cooling 
rate has a non-negligible effect on T,"", its influence is inconsequential here because we 
are using the same set of g(r )  or S(q) for both calculations. Furthermore the relation 
T!.'.> T,"" is not an exception for the metallic Na but occurs also in the Lennard-Jones 
system (Bengrzelius 1986a). 

The same calculational procedure has been repeated for the self-part f s ( q ) .  Since the 
latter in the present mode-coupling theory is proportional to f (q), the iteration of fS(q) 
begins at. T = 215.78 K at which f (4) has a non-zero solution. The results for fS(q) 
at three quenched temperatures are displayed in figure 4 together with their respective 

5 
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f (q) .  From these fS(q). we determined the root-mean-square displacement using either 
the half-width method (Bengtzelius etal 1984) or directly via (7), which has a finite value 
for t -+ CO. These results are plotted in figure 6 and serve to illustrate the change of 
the single-particle mean-square displacement from a small value to infinity in going from 
the glass-like to the liquid state, thereby recovering the quite similar Lindemann's melting 
criterion. This, of course, is not surprising since in the present version of the mode- 
coupling theory the root-mean-square displacement is determined from FS(q,  t) or from the 
half-width method, and either method leads naturally to the temperature TgBGS. We note 
that although both methods yield (u:)l'*/rl, being the root-mean-square displacement in 
one direction measured relative to the position of the first maximum of g ( r ) ,  very close 
to 0.1, the temperature at which this happens is the same as T:,,. What implication can 
we draw from this T? In order to dwell on this point, we recall (G6tze 1986) that the 
mode-coupling theory as used here only describes the dynamical motion of atoms where 
the possibility of the activated or hopping process is excluded explicitly. In other words, 
the whereabouts of any atom is coupled dynamically to its neighbouring atoms such that 
any disturbance that the tagged atom creates and exerts on the other surrounding atoms can 
merely propagate via this type of collective interaction. This (memory) effect will in turn 
act back on the tagged atom after an elapse of a certain time (see, for example, figure 10 in 
Sjolander 1980). As T is lowered this kind of collective coupling between atoms is surely 
enhanced, and gradually a point is reached where it becomes dynamically unfavourable for 
the tagged atom to push its way through the many neighbouring atoms. When this happens 
the resulting atomic motion is then found to undergo a (dynamical) transition displaying a 
trapped-like behaviour with the tagged atom confined to move within a cage formed by the 
surrounding atoms. Such vibrational motion delineates a liquid+viscous-like behaviour, 
a scenario whereby an atom wanders back and forth within a restricted region. In the 
absence of the thermally activated mechanism, this is perhaps the only method of phase 
transition. We stress that the physical origin of this kind of vibrational motion is quite 
different from that implied by the structural parameter R. The latter, which describes 
the variation of 'localized' points g(rmm) and g(r-) with temperature, is perhaps more 
appropriately associated with the slrucrural origin. Nevertheless, it is still possible to get 
some feeling of this dynamical transition if one were to examine the change in g ( r )  with 
T for the half-width at half-maximum (HWHM, Lai 1988a). Physically the KWHM roughly 
describes the vibrational amplitude of ions and when divided by the first-nearest-neighbour 
r l .  i.e. HWWM/rI, is equivalent to the well known Lindemann's criterion from the liquid 
side. Figure 7 shows wHM/rl versus T for Na metal. It is interesting to note that 
HWHM/r] changes linearly in slope and intercept at TgWm = 206 K. As in our previous 
work (Lai 1988a) for Y and Zr (for Y metal T,"" and TgwH" are given by I020 and I040 K 
whereas for Zr metal the corresponding temperatures are 1350 and 1380 K), we find that this 
temperature is higher than the T,"" by about 17 K. This result implies that the origin of the 
above (mode-coupling) 0.1 criterion is likely dynamical rather than structural. Accordingly 
we may thus mark the above 0.1 description to be the beginning of the slowing down of 
structural relaxation and that the value 0.1 is just the ratio of the oscillatory amplitude 
(within the cage) to an average distance between the tagged atom and neighbouring atoms 
in the supercooled regime. Since we have identified TgaGS to be the viscosity-predicted 
G where the viscosity coefficient changes from a liquid-like magnitude to a relative value 
about a factor of 10-100 larger, the physical picture presented above nonetheless appears 
to correlate with it quite well. 

S KLai a n d H  C Chen 
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Figure 7. Ratio of the half-width at half- 
maximum HWHM in units of the first-nearest- 
neighbour I ,  calculated from the MD-simulated 
p ( r )  for the sodium element. 

4.2. Numerical evidence of Gofze's prediction 

We now turn to an examination of (A17). There are several features deserving discussion 
here. First of all, since T:,' was determined above to be 215.78 K, the right-hand side 
of (A17) can be calculated at each q provided LL given by (A15) is known. We have, in 
fact, evaluated the latter parameter at the transition temperature. When this parameter is 
substituted into (A17) we obtain immediately the metallic asymptotic f ( q )  at different T 
near Ty. On the other hand f ( q )  at these same temperatures have been iterated separately 
using (6) and the MD-simulated S(q) .  Both sets of data are plotted together in figure 8. 
As the figure shows, these two sets of non-ergodicity parameters vindicate the asymptotic 
E ' / *  dependence of f ( q )  in agreement with Gotze's hypothesis (compare also figure 4 of 
Van Megen and Pusey (1991)). The temperature dependence of f ( q )  at the first peak and 
at the first minimum of S(q) are also depicted separately in figure 9. This latter figure 
further illustrates the predictive power of the modecoupling theory, for although a direct 
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comparison with experiments is not possible, it nevertheless dictates the same asymptotic 
f ( q )  behaviour similar to that of a hard-sphere system (Fuchs er al 1992) and bears many 
close resemblances to those of related measurements prick et& 1990, Elmoth etol 1992). 

S K Lni and H C Chen 

2.0 z 

Figure 8. Nan-ergodicity form factor 
f (q )  for the sodium element oblaiained 
from (6) and the Fourier-transformed 
S(9 )  (full curve) compared with the 
asymptotic formula of Gam f (9) = 
fBGs(o )  + l . IUhBos(o~t' /z  (broken . ... ..., . 

curve), The separation p m e t e r  6 = 
(Tgws - T)/Tgm, where T:Gs = 
215.78 K, for T = 198, 215 and 
215.75 K is given by 8.2 x lo-*, 3.6 x 

and I . i x  IO-i respectively. 

Further insight into the Debye-Waller factor f ( q )  can be extracted if one were to focus 
on the effect of the pair potential. To t h i s  end, we first compare the exponent parameter A 
given by (A16). For metallic Na we obtain X = 0.687, which appears to be a reasonable 
value since the hard-sphere (Barrat e l  al 1989) (having an infinitely repulsive potential) and 
the Lennard-Jones (Bengtzelius 1986b) (having still large repulsive potential but less than 
the hard-sphere one) systems yield respectively 0.758 and 0.714. Although it is not the 
main purpose of this work. we find it worth while to mention that from A it is possible to 
determine two critical parameters, 0 < a c 1/2 and 0 e b < 1. The parameter a may 
be used to study the so-called p dynamics through a formula that can be shown to satisfy 
(Gotze and Sjogren 1989b, Sjogren 1989, Gotze 1990, 1991) 

(8) R ( q ,  t )  = fBGS(q)  + hBGS(q)(to/fY lo << t < m i '  

where to is a microscopic time scale, the comelator R ( q ,  t )  is that in (6) and OF 151'/*). 
On the other hand the parameter b enters the (Y relaxation process (Gotze and Sj6gren 1987a. 
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Figurc 9. Nonergodicity form factor f (qi) (full circles) for the sodium element with qi at the 
first peak (top) and nr the first minimum (bottom) of S(q)  compared with the asymptotic formula 
of G6tze. f(q) = fBGS(q) + I.123hBGS(q)e’’1 (broken curve). 

Sjogren 1989, Sjogren and GO- 1991). which is ruled by a time scale 7, defined by 

7, o( 1eI-y Y = 1/(2a) + 1/(2b) e -+ 0-. (9) 

For Na these critical exponents a and b are collected in table 1 along with those for the 
hard-sphere and the Lennard-Jones systems. It is gratifying to notice from this table that as 
the pair potential changes from an ideally infinite repulsive (hard-sphere system), to a still 
highly repulsive but weakly amactive (Lennard-Jones system), and to much softer repulsive 
part accompanied by long-range Friedel oscillations (liquid metal), these critical exponents 
vary systematically, implying the increasingly important role played by the interparticle 
interaction. 

Table 1. Parameters A. a and b calculated from the present work for metallic Na compared with 
those of the hardsphere (KS) and the L.enennard-IoneS (U) systems. 

System A n b 

HS 0.758 0.301 0.545 
U 0.714 0.321 0.617 
Na 0.687 0.332 0.663 

Finally, it is of great theoretical interest to compare the spatial variation of the critical 
amplitudes for the hard-sphere and metallic systems. In r-space this system-dependent 
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quantity is given by 

S K hi and H C Chen 

being the Fourier transform of S(q)hBoS(q) (see (A17)). We depict in figure 10 the H ( r )  
for both systems. A noticeable feature in this figure is that even for a realistic Coulomb 
system such as the liquid metal the ,9 dynamics is also characterized only by a nearest- 
neighbour interaction. However, in contrast to the hard-sphere system, the behaviour of 
the metallic H ( r )  beyond the first-nearest neighbour is much less oscillatory. This is one 
manifestation of the realistic potential being described by a softer interparticle potential and 
contrasted to a typical hard-sphere potential being unrealistically 'hard'. As a consequence 
all fluctuations for r < 2 . 4 8 ~  move qualitatively in phase. But since H(r)  vanishes rapidly 
for r > 2 . 4 8 ~  the physical picture that fl  relaxation is a localized excitation remains h e  
also for a metallic system. 

1.0 

0.5 

n 
k - 0.0 x 

-0.5 

-1.0 

1 1.5 2 2.5 3 

Figure 10. Spalid varintion of the critical amplitude H ( r )  far the sodium element (full curve) 
wmpared with the same quantity for B hard-sphere system (broken curve). The hard-sphere 
dimeter c is related to the packing ratio 'I by n = lio'njd 

5. Conclusion 

Starting with a full non-local model pseudopotential, we have applied the electron theory 
of a metal to construct a first-principles interatomic potential for Na liquid metal for use in 
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molecular-dynamics simulation. The pair correlation functions obtained are tested against 
experiments at the melting point and at an elevated temperature. Excellent agreement with 
x-ray measuremenb is found. This prompts us to extend the MD technique to study the 
undercooled liquid and glassy states of Na. To execute this program we need to know 
the temperature dependence of the density of Na. A novel method to estimate the density 
of the sodium system from the liquid via supercooling to the glassy phase is proposed. 
Basically this is an iterative scheme making use of the Wendt-Abraham structure parameter 
in conjunction with the experimental thermal linear expansion coefficient data of the Na 
crystalline state. We find that the pair correlation function simulated from quenching displays 
several features in accord with our previous simulation data using the Monte Carlo method 
and similar to those observed in laboratory glass experiments. From the calculated Wendt- 
Abraham structure parameter R at various T, we obtain Rw = 0.105 at T,"" = 189 K, 
in agreement with our previously proposed hypothesis &ai 1988a) for the universality of 
RLC. As an alternative to the determination of Tg we make use of the same MD structure 
data and insert them into the non-linear self-consistent integral equation of Bengtzelius 
et at (1984) for the time-dependent density fluctuation within the context of the mode- 
coupling theory. It turns out that the predicted glass transition point TgBGS = 215.78 K 
is somewhat higher than T,"". This difference in Tg is not unexpected if one recalls 
the basic hypothesis of the modecoupling theory. Physically, the difference in the glass 
transition point can be further corroborated by referring to shear viscosity measurements. 
Based on the latter data, it appears that T,"", determined directly from the structure data, is 
numerically much closer to the real glass transition temperature such as that defined in the 
calorimetric measurement. To proceed further we analyse the non-ergodicity form factor 
f ( q )  in light of Gotze's prediction. The good agreement between our MD iterated f ( q )  and 
the asymptotic functional form of f ( q )  at two selected wavevectors versus T lends great 
credence to Gotze's conjecture. The effects of the pair potential on f (q) are also discussed 
in the context of systematic change of the critical exponent parameters. These parameters, 
which contain information on the relaxation dynamics, are seen to change consistently as 
the repulsive part of the interparticle potential varies from an ideally infinite hard-sphere 
system to a softer metallic system. Finally comparison of the spatial critical amplitudes 
between the hard-sphere and sodium systems shows discernible differences, which can be 
interpreted physically to be related to the detail of structure. 
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Appendix 

In this appendix we shall outline briefly the derivation of the asymptotic f ( q ) .  Let us begin 
by writing the right-hand side of ( 5 )  as 

(AI) 
where Fq(f(k))  is a functional of f ( k ) .  which appears in the integral in (6). The iterative 
numerical method to solve (5) and (6) implies 

(A2) 

& ( f ( k ) )  = [ " M i r ( q . t  + CO) 

f"'(q)/[l - f ( i ) (q ) l  = F,(f+')(k))  i = I ,  2,. . . . 
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Gotze examined the structure of (A2) and hypothesized the existence of a possible fixed 
point T,BCS such that close to T F  where j(i)(q) approaches f ( q )  one can expand (A2) as 

S K Lai and H C Chen 

we find that g")(q) would be a small perturbation when the physical system is near the 
fixed point T F ,  In fact it can be shown that in the vicinity of T F  (A2)-(A4) mutually 
agree provided that g(')(q) satisfies the following linearized evolution equation: 

where Cqk = [ l  - f ( k ) l 2 a F q / 3 j ( k ) ,  which is a mawix having several properties. One 
important property is that all the matrix elements C q k  are non-negative. This latter property 
ensures that the matrix Cqk satisfies the theorems of Perron and Frobenius (Bellman 1960), 
which state that for a matrix cqk >, 0 there exists a largest non-degenerate real eigenvalue 
Eo such that any other eigenvalue E,, y = 1,2, . . ., of c q k  obeys the inequality 

IE,I < Eo. (A6) 

Since the largest eigenvalue is nondegenerate, the corresponding left- and right-hand 
eigenvectors, denoted by i k  and lk  respectively, 

are uniquely determined up to an additive constant. Gotze called C,, a stability matrix 
because the unique (maximum) eigenvalue sets a necessary and sufficient condition for 
searching for the solution. For the other properties, the interested reader is referred to the 
original works of Gotze (1985. 1986, 1987). 

To make further progress, we take temperature to be our control parameter. Varying 
the temperature and by appealing to (5),  the found solution j " ' (4)  suffers a corresponding 
change which, from (A4), Sf = [ I  - j ( q ) I 2 g ( q ) .  permits a straightforward derivation of 
the following equation: 

c(6qk - c q k ) g ( k )  = - f ( q ) k 2 ( 4 )  + Cg(k')Cq,k,,k"(k'') 
k k ' P  

6T 
+ r C q + O ( g 3 , ( 6 T ) ' , g 6 T ) .  (A% 

Here Cq = T(aFq/aT)f(x)  and Cq.k,,V = [ a 2 F q / a j ( k ' ) a f ( k " ) ] ~ .  Equation (A9) constitutes 
a basic formula fcr solving (A2) asymptotically. To obtain an asymptotic j ( q ) ,  let us define 
a separation parameter 

= ( T F  - T)/T,BoS ( A W  
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